欧洲天气预报数值模式_欧洲气象预报中心
1.现代天气业务发展指导意见的主要任务
2.气象数值预报grapes的图使用的是世界时吗
3.为什么过去数值预报水平北半球比南半球高
创造了世界数值天气预报的人是曾庆存。
曾庆存,国际著名大气科学家,国际数值天气预报奠基人之一。1935年出生于广东省阳江市,1956年毕业于北京大学物理系,1961年在前苏联科学院应用地球物理研究所获副博士学位。
先后在中国科学院地球物理研究所和大气物理研究所工作,曾任大气物理研究所长。1980年当选中国科学院学部委员(院士)。
近六十年来一直活跃在大气科学研究一线,在数值天气预报的基础理论研究中有开创性、系统性贡献,在国际上首次提出“半隐式差分法”,首次成功实现原始方程数值天气预报。
这一工作成为数值天气预报发展的里程碑。创立气象卫星大气红外遥感系统理论和定量反演方法,为吵亩气象卫星遥感做出了开创性贡献。
科研成就
曾庆存在其博士论文中,他在国际上第一个用原始方程进行数值天气预报,“半隐式举和差分法”仍是天气和气候数值模式的核心技术之一,并且被广泛应用于各学科,成为当代超级计算的主流算法之一。
半隐式差分法,提出最早的成功积分原始方程的方法,创立严格保持升答森能量守恒从而完全克服非线性计算不稳定的差分格式,广泛应用;建立了严谨的地转适应过程理论;解决地球流体力学中的一些基本问题;提出最佳信息层理论以合理地选择遥感通道。
他和他的研究集体设计的大气环流模式、海洋环流模式和气候系统模式,能成功地模拟出亚洲季风雨带的推移、大洋环流和中国近海环流流系(如南海暖流等),成功地用作中国跨季度旱涝预测;还成功地用数值方法模拟河湖沉积和三角洲发育过程。
以上内容参考:百度百科-曾庆存
现代天气业务发展指导意见的主要任务
即预报未来某时段内各种天气系统的生消、移动和强度的变化。它是气象要素预报的基础。形势预报的方法可分为两大类:一类是数值预报方法,即直接积分大气方程组或其简化方程组,按所得结果对未来的气压场、温度场和风场作出预报;另一类是天气图方法。后者有以下几种作法:
1.经验外推法
又称趋势法,是根据天气图上各种天气系统过去的移动路径和强度变化趋势,推测它们未来的位置和强度。这种方法,在天气系统的移动和强度无突然变化或无天气系统的新生、消亡时,效果较好;而当其发生突然变化或有天气系统的新生、消亡时,预报往往不符合实际。
2.相似形势法
又称模式法,是从大量历史的天气图中,找出一些相似的天气形势,归纳成一定的模式。如当前的天气形势与某种模式的前期情况相似,则可参照该模式的后期演变情况进行预报。由于相似总是相对的,完全相同是不可能的,因此,用此法也往往出现误差。
3.统计资料法
又称相关法,是用历史资料,对历史上不同季节出现的各种天气系统的发生、发展和移动,进行统计,得出它们的平均移速,寻找预报指标(如气旋生成、台风转向的指标等),进行预报。对历史上未出现过的或移动很快及很慢的例子,则此法不能应用。
4.物理分析法
首先分析天气系统的生消、移动和强度变化的物理因素,在此基础上制作天气预报,此法通常效果比较好。但当对反映这些物理因素的运动方程所进行的简化和定不大符合实际时,就常常造成预报误差,甚至远远偏离实际情况。
上述四种方法各有优缺点,使用时需相互补充,取长补短,综合考虑,才能获得较好的效果。 即预报气温、风、云、降水和天气现象等在未来某时段的变化。形势预报是要素预报的基础。
要素预报有以下几种方法:
1.经验预报方法
在天气图形势预报的基础上,根据天气系统的未来位置和强度,对未来的天气分布作出预测。例如低压移来并得到加强时,可预报未来将有阴雨天气或较大的降水。这种方法的准确性,在很大程度上取决于预报员的经验,又由于天气系统和天气现象并非一一对应,故预报效果不够稳定。
2.统计预报方法
分析天气的历史资料,寻求大气状态的变化同前期气象因子的相关性,用回归方程和概率原理,筛选预报因子,建立预报方程。即得所需的预报值。这种方法的效果主要取决于因子的正确选择。
3.动力统计
将数值预报方法算出的未来气象参数作为预报因子,用回归方程求得一组预报公式,作出要素预报。随着数值模式的改进,此法的准确率可能稳定提高。
气象数值预报grapes的图使用的是世界时吗
现代天气业务以提高天气预报准确率和精细化为核心,重点围绕数值预报业务系统建设、专业化监测预报业务和技术系统研发、多种观测资料综合分析应用、集约化预报业务流程调整与完善以及专家型预报员团队建设等方面推进现代天气业务发展建设。其业务建设的重点任务包括:
(一)数值天气预报业务
按照《中国气象局数值天气预报业务发展(2008—2011年)》及其滚动修订的,推进GRAPES模式发展。在进一步改进和深化T639业务模式应用的基础上,发展建立以GRAPES模式为基础的数值预报业务系统及动力和统计相结合的数值预报产品解释应用业务。
1.数值预报模式
发展完善三维/四维变分同化分析系统并业务运行。提高全球模式卫星遥感资料同化应用水平,在全球变分同化分析系统中卫星遥感资料能够占到所同化资料总量的80%以上。建立区域变分同化系统,有效同化应用多普勒天气雷达、卫星、自动站等高时空分辨率的稠密资料,实现逐小时快速资料同化分析,显著改善对中小尺度系统的分析模拟与短时短期预报能力。有效融合洋面上可获得的卫星、雷达等各种观测资料,完善台风涡旋初始化技术。研发陆表参数的资料同化方法,建立全球实时下垫面资料自动生成系统。开展中国区域资料再分析,利用成熟的区域同化与模式,建立10年长度的试验性再分析资料集。
建立全球25公里分辨率和中国区域3~5公里分辨率的分析与预报系统。优化全球模式动力框架和垂直坐标,改进极区和大地形区的处理方案。考虑平流层物理过程,提升模式顶高。重点改进影响东亚区域预报技巧的降水过程、陆面过程的参数化方案,优化辐射过程中云的处理和预报方案,实现物理过程的合理精细化,发展能反映中国天气气候特点的物理过程参数化方案。研发模式动力诊断与物理诊断的技术和软件,建立数值天气预报系统综合诊断平台,为模式预报性能的改进提供依据。
在国家级发展全球、区域集合预报系统并实现业务运行。发展基于奇异向量的初值扰动方法和物理过程随机扰动方法;有效增加集合预报样本、模式空间分辨率和预报时效,全球集合预报的预报时效达到2周。完善中国TIGGE中心建设,发展多业务中心多模式集合预报集成技术,进一步提高温度、定量降水等要素的概率预报能力;发展概率预报降尺度技术,进一步提高精细概率预报水平。区域级参与国家级数值预报系统研发,并针对本区域开展适合于本地地域与气候特征的区域数值预报业务。
2.数值预报产品统计释用
发展基于T639模式及业务化的区域数值预报模式的解释应用工作,完善数值天气预报产品释用和订正平台。在国家级建立中短期灾害性天气的集合预报释用业务,加强数值预报产品应用的指导能力建设,增加指导产品的种类和数量,提高指导产品的准确率和精细化程度。国家级制作7天全国县市和5公里格点的气象要素客观释用产品并下发,省级结合本地经验制作精细到乡镇及其他服务地点的气象要素释用产品。
(二)天气分析业务
以多种观测资料和数值预报产品的综合应用为基础,以MICAPS系统为平台,逐步从以天气尺度分析为主的业务向天气尺度与中尺度分析相结合的业务转换。
1.天气尺度和中尺度分析业务
开展并完善基于多种资料的天气尺度和中尺度主观分析业务。完善基于高空和地面资料的常规天气尺度分析业务,特别是对灾害性天气发生发展有明显影响的各种特征线、特殊区域、特征系统和物理量的分析。开展基于中尺度观测资料和快速更新同化系统输出的精细数值分析预报产品的中尺度天气分析业务,绘制反映中尺度天气系统发生发展特征及其环境特征的综合分析图。加强对中尺度系统的空间结构、要素配置和物理过程演变的认识和理解,准确判断灾害性天气的种类、强度和落区。完善天气图分析规范。国家级重点加强天气尺度分析,并将分析的地面和高空图下发给各级气象台站,同时开展中尺度分析,为强天气潜势预报奠定基础。省级重点加强中尺度分析,为强对流天气的短时临近预报和灾害性天气短期落区预报提供支持。地、县级气象部门利用上级的分析产品,做好本地灾害性天气预报和补充订正工作。
完善和发展基于多种资料的灾害性天气发生发展的动力热力特征物理参数客观诊断分析技术。国家级向全国提供基于观测资料和数值预报模式系统输出的物理量客观诊断产品,各级气象台站做好客观诊断产品的应用,建立适应本地灾害天气特征的物理量指标体系。
2.灾害性天气和气象灾害监测分析业务
在国家级和省级研发灾害性天气、气象灾害的特征识别技术。利用现代信息处理技术,针对台风、暴雨(雪)、寒潮、大风(沙尘暴)、低温、高温、雷电、冰雹、霜冻、大雾、冻雨、雾凇、龙卷等灾害性天气以及干旱、地质灾害、山洪、城市洪水、道路结冰、积雪、电线结冰、森林和草原火险等气象灾害不同特征,通过各种观测资料的融合分析,在MICAPS平台下实现灾害性天气和气象灾害的人机交互识别和报警功能,建立灾害性天气和气象灾害的监测分析业务。通过完善区域联防制度,实现上下游台站间的信息通报。加强气象灾害的现场调查和地区间观测数据的实时共享。完善预警软件系统的协同功能,提升灾害性天气和气象灾害的监测率。
3.数值天气预报产品检验、评估及订正业务
各级气象台要以各种实时观测资料、数值预报产品检验结果和预报员经验为依据,开展数值预报形势场、要素场以及主要天气系统的动态检验,分析误差规律;比较不同数值模式产品误差,分析数值预报产品相关特征线和特征天气系统的演变规律,订正主要天气系统的移动、强度等信息,提高数值预报产品的使用能力。在国家级开展地面预报图订正业务,并将订正后的地面图下发各级气象台站。
(三)天气预报业务
以多种资料融合技术和高分辨率数值预报产品为基础,提高灾害性天气快速诊断和短时临近预报水平。以数值预报产品释用技术和预报员经验为依托,发展精细化气象要素短期预报业务,特别是定量降水预报业务。利用动力和统计相结合的技术,完善灾害性天气落区短期预报业务。以集合数值预报为依托,提高降水、灾害性天气和其他极端天气的概率预报水平。依托超级集合预报改进完善中期预报业务、发展延伸期预报业务,逐步建立无缝隙预报业务体系。
1.临近预报业务(0~2小时)
大力发展各种观测资料的融合技术,加快建设基于雷达、卫星和自动站资料的定量降水估测(QPE)业务。发展短时强降水、雷电、冰雹、雷雨大风、龙卷等强对流天气的监测分析技术,增强对强对流天气的识别能力。发展强对流天气和台风等的临近预报技术,研发外推预报和数值预报产品释用相结合的预报技术,提高预警时效。在省级和地市级应用具有实时自动识别、报警和预报功能的强对流天气临近预报业务系统。增强预报员对雷达、卫星等资料的分析和对强对流天气的识别能力,提高强对流天气临近预报命中率和时效。
2.短时预报业务(0~12小时)
发展气象观测资料与高分辨率数值分析预报产品融合技术。加强预报员对高分辨率快速分析预报产品的分析和应用,增强对中尺度天气系统及其特征物理量的综合分析能力。发展基于动力和统计释用的灾害性天气落区预报技术。
在国家级和省级建立12小时内时间分辨率小于3小时的灾害性天气种类、强度和落区预报业务。在国家级建立基于集合预报的短时灾害性天气概率预报业务。建立全国上下联动的短时预报业务技术流程。
3.短期预报业务(1~3天)
改进基于稠密气象观测资料和高分辨率数值模式产品的气象要素预报释用技术,发展模式释用与交互订正相结合的站点、格点两种方式的精细化气象要素预报系统,建立全国5公里格点和乡镇及其他服务地点的气象要素预报业务,24小时预报时效内时间分辨率达到3小时。继续提高温度、风、相对湿度等气象要素的预报准确率,特别是提高定量降水预报的准确率和精细化程度。发展主观等级降水预报与高分辨率数值模式产品融合的定量降水预报(QPF)技术,定时制作72小时预报时效内时间分辨率为6小时的降水预报产品。开展预报时效达72小时的雷雨大风和冰雹潜势预报业务,24小时内时间分辨率达到6小时,24-72小时内时间分辨率达到12小时。建立全国统一的精细化预报产品共享数据库(NWFD),向专业气象预报系统和社会公众提供数字化产品。
提高台风路径和强度预报能力以及风雨预报精细化水平。72小时预报时效内时间分辨率达12小时;24小时台风路径预报误差接近100公里,台风强度预报误差降至4.5米/秒左右。
国家级和省级要大力发展台风、暴雨、强对流等灾害性天气落区预报业务,建立和完善灾害性天气的概念模型和预报指标体系。在国家级建立区域集合预报产品分析和灾害性天气概率预报业务。省级建立并加强精细到乡镇及其他服务地点的气象要素预报业务。加强各级预报员对气候背景、主要影响系统发生发展演变特征、数值预报形势场和特征物理量场的分析工作,提高预报员对各类灾害性天气识别和分析能力,发挥预报员对数值预报产品的释用和分析订正作用,做好灾害性天气种类、强度和落区预报。
4.中期预报业务(4~10天)
大力研发灾害性天气的中期客观预报方法,国家级要大力发展针对中期集合数值预报产品的释用技术,发展降水、温度、相对湿度等常规气象要素以及高温、强降水、低温冷害等灾害性天气中期概率预报方法,开发相应的概率预报产品。
发展台风路径和强度的中期预报方法,尤其大力发展基于全球模式和区域模式基础上的集成预报、集合预报和概率预报技术,延长台风预报时效至120小时,发布台风强度和路径概率预报产品。
在国家级和省级发展数值预报可用时效内逐日滚动的常规气象要素预报业务,在国家级建立灾害性天气中期概率预报业务。提高国家和省级预报员对中期数值预报产品的性能分析与解释应用能力,用天气气候学、动力统计学方法,重点提高灾害性、关键性和转折性天气的中期预报水平。
5.延伸期预报业务(11~30天)
在国家级发展海陆气耦合模式及其集合预报业务系统,积极研发延伸期降水和温度距平概率预报产品。研究引发我国持续性异常气象的大气环流前兆信号,建立我国持续性异常气象的动力统计预报方法。基于集合预报业务系统,结合天气气候学、动力统计学等方法,建立重大天气过程和降水、温度要素的延伸期客观预报系统,结合现代气候业务发展,开展延伸期预报业务。
(四)预报技术总结和产品检验业务
在各级气象部门建立常态化的预报技术总结机制,推进预报技术总结的系统化和深度发展。加强天气业务产品的检验。
1.建立天气预报日志制度
在各级气象台建立天气预报日志制度,及时记录各类重要天气的预报过程和预报思路、各种数值预报产品的预报性能、各种新资料的应用情况以及各地特色预报方法使用效果等,为总结预报经验与教训、分析数值预报模式性能、研究改进预报方法提供一手信息。要将天气预报日志制度建立列入业务考核内容。
2.建立预报技术总结交流机制
各级气象部门应建立常态化的预报技术总结机制,及时总结各地发生的重大天气过程,积累预报经验,凝练相关科学问题。发挥电视天气会商系统、气象网站、技术总结专刊和专业期刊作用,为预报技术总结提供交流平台,推进预报技术总结的系统化,编制分省和分天气类型的预报员手册。
3.建立分类预报产品检验业务
系统开展预报产品检验和评估业务。改进常规气象要素预报检验业务,建立并完善灾害性天气短时临近预报、灾害性天气落区预报、中期天气预报和延伸期天气趋势预报的检验业务,加强业务数值模式预报性能的实时检验评估业务。分别建立基于统一检验方法的全国及分省的检验评估业务和省级台站相对中央气象台的检验评估业务。
重点加强灾害性天气预报和短时临近预报检验方法研究,改进完善各类预报产品的客观化、标准化和规范化检验评分系统。通过预报产品的检验达到客观评价预报质量、分析误差来源的目的。
(五)预报业务的技术系统 按照“统一设计,有序实施”的原则,逐步建立集约化的基本天气预报业务技术系统。发展全国通用的气象信息综合分析处理系统(MICAPS),发展全国标准化与地方化结合的短时临近预报业务系统(SWAN),建立全国精细化预报产品共享数据库(NWFD)。
1.气象信息综合分析处理系统(MICAPS)
进一步确立MICAPS在全国天气预报综合业务平台的核心和基础地位,由国家级牵头,集约化、专业化地发展全国适用的MICAPS平台系统,实现软件设计通用化、数据共享标准化、系统结构网络化、交互工具人性化。加快MICAPS系统的天气分析、精细化预报交互订正、中期预报以及数值预报产品分析等通用功能模块的开发和应用,实现MICAPS的数值预报产品时空一致性、要素协调性计算的格点化订正功能,强化MICAPS在各级气象台天气分析预报业务中的基础性和关键性作用。基于MICAPS技术框架,开发台风、海洋、水文、交通等专业化模块,为全国现代天气业务提供专业化平台支持。
2.短时临近预报业务系统(SWAN)
继续开展全国灾害性天气短时临近预报业务系统(SWAN)研发和推广应用。提高对雷达、卫星、地面自动气象站和中尺度快速同化资料的使用水平;实现短时强降水、冰雹、雷暴大风、龙卷等中小尺度天气系统的自动识别;建立定量降水估测和临近预报、强对流短时和临近预报、闪电临近预报等方法,并基于MICAPS技术框架实现产品的综合显示和分析。各级气象台在该系统的规范和标准功能体系下结合地方灾害性天气特点建立本地化的短时临近预报业务系统。
3.精细化天气预报产品共享数据库(NWFD)
发展全国精细化预报产品共享数据库(NWFD),保证对外预报服务产品的一致性。国家级重点提供县级以上城市的要素预报产品,省级提供本省内更加精细化的城镇预报产品。开展基于格点化气象要素预报的数据存储和检索功能,实现要素预报结果实时提供、网上直接调用、结论实时评定等功能。
4.业务技术系统二次开发
国家级加强MICAPS,SWAN,NWFD等业务技术系统研发的标准化和规范化管理,提升框架设计的开放程度,提供二次开发工作便利条件。省级单位根据本地业务需要和数据特点在总体框架下开发本地应用模块,力争使基本天气预报业务的技术系统达到国际先进水平。
为什么过去数值预报水平北半球比南半球高
请问你是什么意思?准确率吗?
天气图是传统天气预报主要方法
所谓天气图就是标有同一时间、不同地点天气现象和气象要素的地图。天气图分地面、高空两大类。从天气图上可一目了然地年看到天气系统和天气的分布,知道冷空气、暖空气在哪里,哪里刮风下雨、哪里天气晴好。连续分析不同时刻天气图,就知道天气系统的移向移速,从而判断本地未来受什么天气系统影响,会出现什么天气。
数值天气预报是现代天气预报的主要方法
20世纪80年代以来,随着遥感、计算技术和气象卫星资料的广泛应用,世界天气预报出现了新的飞跃,传统的天气图已被数值天气预报取代。所谓数值天气预报应用7个流体力学、热力学微分议程来描述大气运动规律,7个议程中含有7个未知数--最高气温、最低气温、降水量、湿度、气压、风向、风速,通过大型高速计算机求解方程组,获得未来7个未知数的时空分析,即未来天气分布。世界上有30多个国家开展数值预报业务,发达国家建立了全球和有限区域两种预报模式,计算机最高运行速度40亿次/秒。全还应数值预报模式垂直分层超过30层,水平分辨率60公里,预报可用时效中高纬10天,低纬5天。有限区域预报模式水平分辨率15公里,美国、德国可达2公里。
我国的数值预报曾经长期使用EC.T639等欧美国家产品 近年自主研发的GRAPES_GFS系统投入使用
在中国,1982年开展数值预报业务,每天制作北半球三天形势预报。1995年引进美国的Cray巨型计算机(峰值运算速度20亿次/秒)每天制作全球七天形势预报。19年起每天制作全球十天形势预报。目前全球预报水平分辨率120公里,有限区域预报水平分辨率55公里。我国气象体制分成五级:中国气象局、大区气象局、省级气象局、市级气象局和县级气象局,全国气象部门共有6万多人。与发达国家相比,我国气象事业的主要差距是:
1、资料同化系统落后,气象卫星、商用飞机和天气雷达的资料尚未进入数值预报系统。天气雷达定量测定降水尚未开展,卫星云图还停留在看图识字水平上。
2、数值预报产品释用尚未形成业务。
3、天气预报重复劳动严重,主要原因是国家中心和省级气象台指导产品少、质量不高,指导不到位。下级台站为了服务,只能独立地制作长、中、短天气预报。
Bjerknes(1911)曾把数值天气预报归结为初边值问题:给定当前大气状态的初值和合适的边界条件,模式将能给出大气将来时刻的演变结果。初始值估计的越精确,预报的质量就越好。初始值的精确性直接决定数值天气预报的效果。
南北半球观测资料的差异性(北半球的观测资料,系统性、时空覆盖率、观测类型和数目都显然比南半球要好得多)导致了在数值天气预报中北半球的初始值比南半球的初始值更为优质,因此由模式给出的预报值也是北半球比南半球更接近“真实”状态。
补充:
初值场一般是由观测资料和模式给出的“模式”状态融合之后给出的。观测作为一个对“真实”状态相对忠实的记录,有着其“更接近真实”的优点,但由于其时间和空间的离散性和独立性,就其整体来讲是很粗糙的,不足以直接作为初值输入;而模式给出的“模式”状态,有着其物理上的动力过程和时空上的完整性,但由于仅仅是“真实”状态的近似,所以也就无法代替观测的角色。
为了把观测和模式所带来的两种不同但又互补的信息融合在一起,从而产生一种既接近真实状态又包含内在物理过程的四维的“运动的物理图像”,就发展出了资料同化方法,即一种把各种时空上不规则的零散分布的观测融合到基于物理规律的模式当中的方法。
参考:
《大气数值模式及模拟》,王澄海等编著,气象出版社,2011年。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。